Single-frame Super-resolution by Inference from Learned Features

نویسندگان

  • Olcay KURŞUN
  • Oleg FAVOROV
چکیده

Super-resolution is the creation of higher resolution views of pixel-based images through interpolation between the original pixels. Greater super-resolution can be achieved by taking advantage of local regularities inherent in natural images. In this paper, to learn regularities, we make use of the recently proposed SINBAD model of how the cerebral cortical network learns regularities by discovering regularity-simplifying environmental features [5, 14]. Using the regularities discovered with the SINBAD approach, we were able to predict more accurately the interpolated pixels from the ones in the original image and were able to generate visually plausible fine spatial details in the expanded image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Single Frame Image super Resolution using Learned Directionlets

In this paper, a new directionally adaptive, learning based, single image super resolution method using multiple direction wavelet transform, called Directionlets is presented. This method uses directionlets to effectively capture directional features and to extract edge information along different directions of a set of available high resolution images .This information is used as the training...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Exploiting Self-similarities for Single Frame Super-Resolution

We propose a super-resolution method that exploits selfsimilarities and group structural information of image patches using only one single input frame. The super-resolution problem is posed as learning the mapping between pairs of low-resolution and high-resolution image patches. Instead of relying on an extrinsic set of training images as often required in example-based super-resolution algor...

متن کامل

Single frame image super - resolution : should we process locally or globally ?

In this paper we study the usefulness of different local and global, learning-based, single-frame image super-resolution reconstruction techniques in handling three specific tasks, namely, de-blurring, de-noising and alias removal. We start with the global, iterative Papoulis–Gerchberg method for super-resolving a scene. Next we describe a PCA-based global method which faithfully reproduces a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003